\(\int \frac {\sqrt {\sec (c+d x)} (A+B \sec (c+d x))}{a+b \sec (c+d x)} \, dx\) [418]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [F(-1)]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 33, antiderivative size = 101 \[ \int \frac {\sqrt {\sec (c+d x)} (A+B \sec (c+d x))}{a+b \sec (c+d x)} \, dx=\frac {2 A \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{a d}-\frac {2 (A b-a B) \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 a}{a+b},\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{a (a+b) d} \]

[Out]

2*A*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec
(d*x+c)^(1/2)/a/d-2*(A*b-B*a)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2*
a/(a+b),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a/(a+b)/d

Rubi [A] (verified)

Time = 0.22 (sec) , antiderivative size = 101, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.152, Rules used = {4123, 3856, 2720, 3934, 2884} \[ \int \frac {\sqrt {\sec (c+d x)} (A+B \sec (c+d x))}{a+b \sec (c+d x)} \, dx=\frac {2 A \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{a d}-\frac {2 (A b-a B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticPi}\left (\frac {2 a}{a+b},\frac {1}{2} (c+d x),2\right )}{a d (a+b)} \]

[In]

Int[(Sqrt[Sec[c + d*x]]*(A + B*Sec[c + d*x]))/(a + b*Sec[c + d*x]),x]

[Out]

(2*A*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a*d) - (2*(A*b - a*B)*Sqrt[Cos[c + d*x]
]*EllipticPi[(2*a)/(a + b), (c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a*(a + b)*d)

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3934

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[d*Sqrt[d*S
in[e + f*x]]*Sqrt[d*Csc[e + f*x]], Int[1/(Sqrt[d*Sin[e + f*x]]*(b + a*Sin[e + f*x])), x], x] /; FreeQ[{a, b, d
, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4123

Int[((csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/(csc[(e_.) + (f_.)*(x_)]*(b_
.) + (a_)), x_Symbol] :> Dist[A/a, Int[(d*Csc[e + f*x])^n, x], x] - Dist[(A*b - a*B)/(a*d), Int[(d*Csc[e + f*x
])^(n + 1)/(a + b*Csc[e + f*x]), x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2
- b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {A \int \sqrt {\sec (c+d x)} \, dx}{a}-\frac {(A b-a B) \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{a+b \sec (c+d x)} \, dx}{a} \\ & = \frac {\left (A \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{a}-\frac {\left ((A b-a B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} (b+a \cos (c+d x))} \, dx}{a} \\ & = \frac {2 A \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{a d}-\frac {2 (A b-a B) \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 a}{a+b},\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{a (a+b) d} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.57 (sec) , antiderivative size = 76, normalized size of antiderivative = 0.75 \[ \int \frac {\sqrt {\sec (c+d x)} (A+B \sec (c+d x))}{a+b \sec (c+d x)} \, dx=\frac {2 \cot (c+d x) \left (a B \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\sec (c+d x)}\right ),-1\right )+(A b-a B) \operatorname {EllipticPi}\left (-\frac {b}{a},\arcsin \left (\sqrt {\sec (c+d x)}\right ),-1\right )\right ) \sqrt {-\tan ^2(c+d x)}}{a b d} \]

[In]

Integrate[(Sqrt[Sec[c + d*x]]*(A + B*Sec[c + d*x]))/(a + b*Sec[c + d*x]),x]

[Out]

(2*Cot[c + d*x]*(a*B*EllipticF[ArcSin[Sqrt[Sec[c + d*x]]], -1] + (A*b - a*B)*EllipticPi[-(b/a), ArcSin[Sqrt[Se
c[c + d*x]]], -1])*Sqrt[-Tan[c + d*x]^2])/(a*b*d)

Maple [A] (verified)

Time = 6.53 (sec) , antiderivative size = 217, normalized size of antiderivative = 2.15

method result size
default \(-\frac {2 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \left (A \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a -A \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b +A \operatorname {EllipticPi}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \frac {2 a}{a -b}, \sqrt {2}\right ) b -B \operatorname {EllipticPi}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \frac {2 a}{a -b}, \sqrt {2}\right ) a \right )}{a \left (a -b \right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(217\)

[In]

int(sec(d*x+c)^(1/2)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

-2*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)
^2+1)^(1/2)*(A*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*a-A*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*b+A*EllipticPi(
cos(1/2*d*x+1/2*c),2*a/(a-b),2^(1/2))*b-B*EllipticPi(cos(1/2*d*x+1/2*c),2*a/(a-b),2^(1/2))*a)/a/(a-b)/(-2*sin(
1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [F(-1)]

Timed out. \[ \int \frac {\sqrt {\sec (c+d x)} (A+B \sec (c+d x))}{a+b \sec (c+d x)} \, dx=\text {Timed out} \]

[In]

integrate(sec(d*x+c)^(1/2)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

Sympy [F]

\[ \int \frac {\sqrt {\sec (c+d x)} (A+B \sec (c+d x))}{a+b \sec (c+d x)} \, dx=\int \frac {\left (A + B \sec {\left (c + d x \right )}\right ) \sqrt {\sec {\left (c + d x \right )}}}{a + b \sec {\left (c + d x \right )}}\, dx \]

[In]

integrate(sec(d*x+c)**(1/2)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c)),x)

[Out]

Integral((A + B*sec(c + d*x))*sqrt(sec(c + d*x))/(a + b*sec(c + d*x)), x)

Maxima [F]

\[ \int \frac {\sqrt {\sec (c+d x)} (A+B \sec (c+d x))}{a+b \sec (c+d x)} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} \sqrt {\sec \left (d x + c\right )}}{b \sec \left (d x + c\right ) + a} \,d x } \]

[In]

integrate(sec(d*x+c)^(1/2)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*sqrt(sec(d*x + c))/(b*sec(d*x + c) + a), x)

Giac [F]

\[ \int \frac {\sqrt {\sec (c+d x)} (A+B \sec (c+d x))}{a+b \sec (c+d x)} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} \sqrt {\sec \left (d x + c\right )}}{b \sec \left (d x + c\right ) + a} \,d x } \]

[In]

integrate(sec(d*x+c)^(1/2)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*sqrt(sec(d*x + c))/(b*sec(d*x + c) + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\sec (c+d x)} (A+B \sec (c+d x))}{a+b \sec (c+d x)} \, dx=\int \frac {\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}}{a+\frac {b}{\cos \left (c+d\,x\right )}} \,d x \]

[In]

int(((A + B/cos(c + d*x))*(1/cos(c + d*x))^(1/2))/(a + b/cos(c + d*x)),x)

[Out]

int(((A + B/cos(c + d*x))*(1/cos(c + d*x))^(1/2))/(a + b/cos(c + d*x)), x)